

AFRL-RI-RS-TR-2008-325
Final Technical Report
December 2008

DEFENSE ADVANCED RESEARCH PROJECTS
AGENCY (DARPA) NETWORK ARCHIVE (DNA)

Net-Scale Technologies, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-325 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

JAMES HANNA JAMES W. CUSACK, Chief
Work Unit Manager Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

DEC 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Sep 06 – Sep 08
4. TITLE AND SUBTITLE

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DARPA)
NETWORK ARCHIVE (DNA)

5a. CONTRACT NUMBER
FA8650-06-C-7638

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62304E

6. AUTHOR(S)

B. Flepp

5d. PROJECT NUMBER
DANA

5e. TASK NUMBER
SC

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Net-Scale Technologies, Inc.
281 State Hwy 79
Morganville, NJ 07751-1157

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISE
525 Brooks Rd.
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-325

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2009-0322

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The purpose of this project is to gain practical experience with designing and implementing a secure distributed storage system. In
particular, this project investigated the various relevant topics. We sought to identify the hard problems in combining usability with
security. Typically ease of use, convenience, any time anywhere access and security are contradicting requirements. We sought to
understand how this is best approached. Further we endeavor to understand whether today’s state-of-the-art is sufficient. A number
of secure systems with secure sharing have been built, or are being built. However, no system is in practical widespread use. Does
this mean there are unsolved problems, and if yes, what are they? For obvious security reasons, large organizations require review
and certification of all software installed on laptops and PC’s (Personal Computers). Is zero footprint web access a practical
solution? Zero footprint web access makes this costly and time consuming process unnecessary because it runs entirely in an existing
browser environment which has already been certified by most organizations.
15. SUBJECT TERMS
Network based data storage, Metadata aided intelligent retrieval, management metadata, automated metadata.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

99

19a. NAME OF RESPONSIBLE PERSON
James P. Hanna

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

ii

Table of Contents

1. Goal ... 1

1.1. Project Goal ... 1

1.2. Long Term Goal ... 1

2. Overview .. 3

2.1. Purpose of this Document ... 3

2.2. Purpose of this Project ... 3

2.3. Guiding Design Principles for Security ... 5

2.4. Concepts to be Implemented and Tested ... 5

2.5. Concepts Left Out in this Prototype ... 6

2.6. Development Process ... 8

2.7. Risk Factors .. 8

3. Requirements .. 10

3.1. Secure Distributed File System ... 10

3.2. Storage Node ... 11

3.3. Web Access Client... 12

4. Introduction to Cryptographic Technology Used .. 13

4.1. Random Key Generation ... 13

4.2. Symmetric Encryption .. 13

4.3. Asymmetric Encryption ... 16

4.4. User Certificates .. 17

4.5. Cryptographic Hash Function (Message Digest) ... 18

4.6. Cryptographic Links ... 19

4.7. Secure Sharing ... 20

iii

4.8. Inheritance of Access Rights .. 22

4.9. Security Model ... 23

4.9.1. Protection Against Unauthorized Data Read Access 23

4.9.2. Protection Against Unauthorized Data Modification 23

4.9.3. Protection Against Data Loss ... 24

4.9.4. Private Key Protection ... 24

4.9.5. Key Recovery .. 25

4.10. Access Rights ... 25

5. Architecture .. 26

5.1. Overview ... 26

5.2. Inheritance of Access Rights .. 31

5.3. Encrypted File System .. 32

5.3.1. Directories ... 34

5.3.2. Root Directories .. 35

5.3.3. Share Roots .. 36

5.3.4. Back Links .. 37

5.3.5. File System Efficiency ... 37

5.4. Parallel Data Read with Automatic Load Balancing 37

5.5. Data Write .. 38

5.5.1. Transactional Nature of Write .. 39

5.6. Network Data Synchronization .. 40

5.7. End-to-End Security ... 41

5.8. No Single Point of Failure .. 42

5.9. Defense Against Denial of Service Attacks .. 43

6. Secure Distributed File System Design .. 44

iv

6.1. Parallel Data Read Parameters ... 44

6.2. Physical File Names ... 44

6.2.1. File Name Spreading ... 45

6.3. Root File Names ... 47

6.4. Regular File Names ... 48

7. Storage Node Design .. 49

7.1. Storage Node Hardware .. 49

7.2. Storage Node Software Configuration ... 50

7.3. Transaction Queues for Data Integrity ... 51

7.3.1. Transaction Queue Design ... 52

7.3.2. What Gets Entered into the Transaction Queue? 53

7.3.3. Some Design Consequences ... 53

7.3.4. Headaches Caused by POSIX Lock Specification 54

7.3.5. Problem with Combining rename() and File Locking 55

7.4. Domain Name and Server List Management ... 56

8. Access Client Design .. 59

8.1. CSS ... 59

8.2. JavaScript .. 59

8.2.1. Graphical Interface to user ... 59

8.2.2. Interface to Java ... 60

8.3. Java ... 66

9. Storage Node and Client Integration .. 67

9.1. Overview ... 67

9.2. Network File Server Functions .. 68

9.3. Storage Node Access Protocol (WebDAV) .. 69

v

9.4. Design Decision: Apache mod_dav or Net-Scale Daemon 69

9.5. Protocol Definition .. 71

9.5.1. Overview ... 71

9.5.2. GET Method .. 71

GET Request Syntax and Header Fields ... 71

GET Response Header Fields .. 72

GET Response Status Codes ... 72

9.5.3. PUT Method .. 72

PUT Request Syntax and Header Fields ... 72

PUT Response Header Fields .. 73

PUT Response Status Codes ... 73

9.5.4. COPY Method .. 74

COPY Request Syntax and Header Fields ... 74

COPY Response Header Fields .. 74

COPY Response Status Codes ... 74

9.5.5. DELETE Method ... 75

DELETE Request Syntax and Header Fields ... 75

DELETE Response Header Fields ... 75

DELETE Response Status Codes ... 75

9.5.6. IHLOAD Method ... 76

IHLOAD Request Syntax and Header Fields ... 76

vi

IHLOAD Response Header Fields ... 76

IHLOAD Response Status Codes ... 77

9.5.7. IHSAVE Method .. 77

IHSAVE Request Syntax and Header Fields ... 77

IHSAVE Response Header Fields .. 78

IHSAVE Response Status Codes ... 78

9.5.8. OPENTRANS Method .. 78

OPENTRANS Request Syntax and Header Fields ... 78

OPENTRANS Response Header Fields .. 78

OPENTRANS Response Status Codes ... 79

9.5.9. CLOSETRANS Method ... 79

CLOSETRANS Request Syntax and Header Fields .. 79

CLOSETRANS Response Header Fields ... 79

CLOSETRANS Response Status Codes .. 79

9.6. Design Compromises and Deferred Features .. 80

9.6.1. Changing the Locks (Access Revocation) .. 80

9.6.2. File Date and Time Stamps ... 81

9.6.3. Directories in Memory ... 81

9.6.4. Root Directories Cannot be Shared .. 82

9.6.5. Cryptographic Link ID Rollovers .. 82

10. Decision Guidelines ... 83

10.1. Critical Items ... 83

vii

10.2. Important Items .. 84

10.3. Less Important Items .. 85

References .. 86

List of Acronyms ... 87

viii

List of Figures

Figure 1. Cryptographic links used for secure sharing of a document. The document is

encrypted using random secret key kd that is not shared with the users. Instead, each user

gets a cryptographic link (CL1…CL3). Together with their private secret keys (k1…k3) users

can derive the secret key kd upon reading the document. Note that kd is never stored

anywhere. .. 20

Figure 2. Secure inheritance of access rights over multiple directory levels. 22

Figure 3. An architecture overview, illustrated here with a single storage node (left) and a

single user client (right). Orange components are built by Net-Scale. 27

Figure 4. Prototype system overview. The storage nodes are intentionally operated from places

with (unreliable) consumer Internet connection and advertise their current IP address to a

Dynamic DNS (DDNS) service provider. This allows the users to find the storage nodes even

when their IP (Internet Protocol) addresses change frequently. 29

Figure 5. Structure of a secure file, which can represent either a clear file or a clear directory.

 .. 33

Figure 6. An encrypted user directory contains pointers to its files and subdirectories in the

encrypted data part. ... 34

Figure 7. Example of a small physical directory tree that is used to store encrypted files which

form the actual user directory trees. The user directory trees are not correlated to this

physical directory tree at all. To conserve drawing space, one directory level is omitted

and the file names are shortened. ... 46

Figure 8. A possible storage node hardware configuration: Dell Inspiron 520s slim line design,

which does not take up a lot of space. The software is installed and configured by Net-

Scale and no keyboard or screen is necessary for operation. 49

ix

Figure 9. Network diagram of the dynamic DNS (DDNS) setup. 57

Figure 10. Integration of a storage node and access client and integration of a storage node

with the other storage nodes. HTTP is used only for starting the web applications. It sends

the web content, JavaScript, and Java code to the browser. WebDAV is used for all storage

data interactions between the access client and the storage node(s) and for the

interactions between the storage nodes. ... 67

1

1. Goal

1.1. Project Goal

Demonstrate that a robust distributed storage network with end-to-end security and a good

user experience is feasible by designing, implementing, and deploying a prototype system with

multiple storage nodes and a zero footprint web access client.

1.2. Long Term Goal

Make network storage as vendor and technology independent, robust, and scalable as the

Internet is today while maintaining end-to-end security and zero footprint web access.

This means an organization or group can operate such a storage network over decades mixing

many storage nodes, which come from different vendors and from different technology genera-

tions. If a new node is added, the system simply gains more storage capacity, becomes more

robust and provides higher access bandwidth, all without elaborate manual reconfiguration and

optimization of the network.

Achieving this vision requires a reference design and implementation for the overlaying prin-

ciples and interfaces such that technology from many vendors and many generations can work

together. Who will do it? Commercial vendors have no incentive because that contradicts their

most successful business model (lock customers into proprietary technology). On the other

hand, the open source and research community has shown little commitment to this either.

This community seems to be more focused on creating the best possible system within a single

technology generation.

2

A global open system will have to make compromises and cannot be the best possible solution

in all aspects. However, by spreading out globally its total value will be far greater than that of

the sum of many superior “island” solutions. Not only is such a system vendor independent, but

also its code diversity makes it much more secure against system-wide attacks by hackers.

This global solution is our main motivation. Success will require a good understanding of the

work of all main players in this field including their goals and concerns. It will further require

building robust easy to use reference systems quickly, and finally, it will require diplomatic

skills for bringing people together.

How do we get there?

 Step 1 is to get a good understanding of the current state-of-the-art and who the players

are. This involves studying the literature and actively participating in and organizing work-

shops and conferences. This activity is accompanied by developing the details of the inter-

faces and the requirements for participating systems. Finally, we need to build credibility

for ourselves by building a real working prototype system, which solves at least a few rec-

ognized key challenges.

 Step 2 is gaining the trust and support of a championing organization with worldwide re-

spect, which can successfully support and promote the concept. In our view, a prime can-

didate for this is DARPA (Defense Advanced Research Projects Agency).

 Step 3 consists of building alliances with key parties and implementing a plan to create

and roll out the first real system with multiple organizations (representing industry, the

open source community, and Government) involved from the very beginning.

 Step 4 involves setting up a robust governing structure of the new system for controlling

the few things that need central control and for developing and maintaining guidelines and

standards.

3

2. Overview

2.1. Purpose of this Document

This document contains the requirements, architecture and design of the secure distributed

storage prototype system.

2.2. Purpose of this Project

The purpose of this project is to gain real life practical experience with designing and imple-

menting a secure distributed storage system. In particular, we want to investigate:

 What are the hard problems in combining usability with security? Typically, ease of

use, convenience, any time anywhere access and security are contradicting requirements.

We need to understand how this is best approached.

 Is today's state-of-the-art sufficient? A number of secure systems with secure sharing

have been built, or are being built, including OceanStore [1], [2]

(http://oceanstore.cs.berkeley.edu), Wuala [3] (http://wua.la), Allmydata

(http://allmydata.org). However, no system is in practical widespread use. Does this mean

there are unsolved problems, and if yes, what are they?

Is zero footprint web access a practical solution? For obvious security reasons, large organiza-

tions require review and certification of all software installed on laptops and PCs (Personal

Computers). Zero footprint web access makes this costly and time consuming process unneces-

sary because it runs entirely in an existing browser environment which has already been certi-

fied by most organizations. Furthermore, zero footprint web access is device independent and

can be extended relatively easily to work on hand-held mobile devices.

http://oceanstore.cs.berkeley.edu
http://wua.la
http://allmydata.org

4

 What are the hard problems in making a secure system vendor independent? To our

knowledge, nobody has addressed this issue yet. All existing systems and concepts assume

that the entire system consists of a single coherent software layer. However, any long-term

stable solution has to be vendor and technology independent.

We understand that this prototype will not address all critical technologies and key challenges.

However, given the limited time and budget we feel that it is more important to complete an

end-to-end system and be able to learn real life lessons from it, than working towards a large

feature complete system but not gaining any real life feed-back at all.

This is also in line with the standard Net-Scale iterative development approach wherein this

project can be viewed as the first iteration in a larger endeavor to set the standards and create

reference implementations for a vendor and technology independent secure distributed storage

mesh.

Conducting a formal trial is not budgeted within this project. However, such a trial could be

realized in a follow-up project. Even without a formal trial, building this prototype system end-

to-end and opening it to a few real users will provide invaluable lessons for the planning of fu-

ture work.

5

2.3. Guiding Design Principles for Security

1. Minimization of the security sensitive system parts. In essence, the system will only

rely on standard cryptographic algorithms and libraries for security. Any other part or code

should not compromise security if it has bugs or malfunctions (it may bring down the sys-

tem temporarily but no data is lost or compromised).

2. Decentralization of break-in points. Break-in to any part of the system will give an in-

truder at most access to a small part of the data. For example, there is no central user da-

tabase which, if compromised would give an intruder access to the entire system. This is

achieved in a large part by end-to-end security (see below).

3. End-to-end security. The access client through use of a private key can only decrypt

data, which is stored on an external USB (Universal Serial Bus) dongle. Users do not have to

trust the storage nodes nor the access network to keep their data secret.

2.4. Concepts to be Implemented and Tested

Following is the original list. Most concepts have been implemented and tested with the excep-

tion of distributed storage (Bullet 2 and its dependents, Bullets 3, 6, and 7).

 No client side software installation (zero foot print web access). Users are not re-

quired to install any client side software. The entire access client is loaded through the

web and runs on the PC's existing web browser environment. Nevertheless, users can inte-

ract with the local file system, for example, for bulk upload or download.

 No single point of failure. Any individual component of the system can fail at any time

with no prior warning and without affecting the system functionality.

 Geographically distributed storage. Data is replicated over multiple storage nodes in

different parts of the country and if possible in different continents.

6

 End-to-end security. Security and access control are managed through data encryption

and not through traditional gatekeepers. No single point of security vulnerability.

 Secure sharing. Users can give other users access to directory trees and therefore the

files contained in these directories or folders. They can later revoke that access right with-

out the need to re-encrypt all files and redistribute new keys to other users with access

rights to those files.

 Access bandwidth is higher than the fastest storage node. Access clients will retrieve

files from all available storage nodes in parallel, which makes the total access bandwidth

approach to the sum of the available storage node bandwidths.

 Data integrity. When a user stores or modifies a document and not all storage nodes are

on-line at that time, then the network will ensure data integrity behind the scenes. The

user does not have to wait until all storage nodes are on-line for the write operation to

complete.

2.5. Concepts Left Out in this Prototype

Concepts and technologies which are not implemented in this project include a) the creation of

separate web access nodes for hand-held clients and cell phones, b) off-line capability of the

access clients, and c) client features which limit document handling rights, such as allowing

users to view a document but not to print or save it. We felt that these technologies are suffi-

ciently well understood that they do not necessarily need to be tested as part of this project.

Additionally, there are a few concepts, which we do believe are not yet sufficiently unders-

tood, but which did not fit into this project. These include:

7

 Secure search. Data is not efficiently searchable in the network, as no index in the net-

work is implemented. Advancements in cryptography may one day allow secure indexing on

encrypted data (see, for example, [4]).

 Spreading of files over multiple nodes. In this prototype, all files are fully duplicated

on all storage nodes. Access to 1 out of the n nodes is therefore sufficient for data recon-

struction. However, the size of available storage space does not grow with the number of

storage nodes brought on-line. This makes this prototype system wasteful with disk space

but greatly reduces the complexity for managing the location of user data.

 Self-healing. While the system is robust against individual node failures, a node loss is

not automatically detected and adding a new node involves manual intervention.

 Synchronization. No true data synchronization between a user client and the network

storage. The drag-and-drop update mode should be an acceptable workaround in most cas-

es.

 Secure revision control and the ability to browse and restore file and tree states of the

past.

 Key recovery through use of shared secret methods: Users trust a cryptographically

spread token to each of n friends, agencies, or other parties. Exactly k (k < n) tokens are

needed to reconstruct the key. The parties don't know of each other. This makes key re-

covery both highly robust and highly secure.

 Private key protection through use of pass phrase and/or external dongle and/or the in-

tegration with existing infrastructure, such as a CAC (Common Access Card).

8

 Encryption algorithm upgrades. As the available compute power increases, existing en-

cryption methods will become less secure and eventually obsolete. This requires a periodic

upgrade of the methods in use. It can be achieved by re-encrypting all documents with new

keys and new methods. Since the re-encryption with new keys is already built into the sys-

tem, an automated method for upgrading the encryption algorithms can easily be added.

2.6. Development Process

This project includes work that is of research nature. Not all methods and technologies, which

are intended to be used, are fully understood at project start. We therefore decided for an

iterative development process even within such a small project. The first iteration consisted of

conducting specific experiments to test the least understood and therefore most risky compo-

nents. The outcome of this experimentation phase determined the details of the remainder of

the system design and project plan.

2.7. Risk Factors

 Feature limitations. What features cannot be implemented or are inefficient using end-

to-end security (e.g., business processes). The two main SDF (Secure Distributed File Sys-

tem) characteristics to watch out for are:

- Client needs to be on-line for processing to take place.

- Data needs to be transferred to client for processing.

One way to go around such limits is to give a process running in the network read and

write access to the necessary data to do its job. This will enable almost any traditional

feature but will also add a (controlled) component in the network that needs to be

trusted.

9

 Public key distribution. According to some opinion, public key infrastructure failed in

the past due to the overhead of public key distribution.

 Long-term cryptographic strength. We cannot make any guarantees how long the en-

cryption methods used today will remain strong. We can continuously refresh data with

new encryption methods. However, we cannot offer protection against somebody stealing

the data disk and just keeping it until the time comes when the data can be cracked. This

should not be a problem, except for very special applications.

 Cryptographic links introduce cryptographic weaknesses. Does adding cryptographic

links reduce the cryptographic strength of the secret key they encrypt? According to Hilary

Orman this is only of theoretical concern. In practice this reduces the search space only a

tiny bit and does not significantly reduce security.

 Clearing secret keys from Java memory. Secret keys should only be kept in memory as

short as possible and they must be overwritten with random data or zeros before freeing

the memory. That's because otherwise that secret information could get into the hands of

another application that claims that memory. For the same reason we also need to prevent

such memory from even be written to swap space on disk. Unfortunately, the Java libraries

we use for the prototype (add reference here) does not seem to provide such functionality

and our application code cannot clear the keys manually because they are held in private

parts of the classes which are not accessible by the application code. The solution will be

to discover ways to clear secrets with the current library after all, find a better Java cryp-

tographic library implementation, or worst, case, implement the necessary cryptographic

algorithms ourselves. Java control over memory is, in principle, possible. See for example

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/ByteBuffer.html.

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/ByteBuffer.html

10

3. Requirements

Following is the original lists. Most requirements are fulfilled with the exception of those with

dependencies to data distribution (see Section 2.4.). It concerns Section 3.1. , Bullet 4, Sec-

tion 3.2. , Bullets 3, and 4, Section 3.3. Bullet 6).

3.1. Secure Distributed File System

 End-to-end security. The end user can only decrypt data with proper read privileges us-

ing that user's private key. The private key is stored on a USB dongle and is never stored on

the client PC or a storage node.

 Data consistency through proper locking mechanism, including atomic operations over

multiple files.

 Data integrity. Data is never left in an inconsistent state, even if network connection is

lost in the worst possible moment.

 Synchronization, i.e., automatic propagation of modifications to other nodes.

 Avoidance of dead lock and infinite loop situations.

11

3.2. Storage Node

 Implementation of encrypted file system.

 Standard web server hosting the access client.

 Dynamic DNS (Domain Name System) client.

 Regular submission of health and statistic information to a central web server.

 System administrator data disk copy tool.

 System administrator configuration tools must be avoided or minimal.

 System administrator diagnostic tools: useful information in log files and regularly copied

onto a central monitoring web server. Ability for remote access and remote software up-

dates.

12

3.3. Web Access Client

 Web based Ajax (Asynchronous JavaScript and XML) client. No client side software instal-

lation or configuration required. Nice looking, easy to use, and quickly responding user in-

terface.

 Bulk drag-and-drop with overwrite and update modes. Drag-and-drop between the local

file system and network storage but also within the network storage or within the local file

system. “Update mode” means that only files that are older on the target than the source

are overwritten.

 Guaranteed error discovery. If a bulk upload completes without error, user must have

guarantee that all data was transferred correctly.

 Robustness against network interruption and PC reboot. If a user's PC is shut down during

a data transfer, the transfer must continue where it left off when the PC boots up again

and the user reloads the web access client.

 Encryption and decryption of data is done by the Java applet on the fly and is hidden

from the user.

 Parallel download with automatic load balancing to maximize the effective download

bandwidth.

13

4. Introduction to Cryptographic Technology Used

4.1. Random Key Generation

The data of each document and directories is encrypted with a different random encryption

key. Furthermore, these key changes each time the document or folder data changes. The ran-

dom key therefore must be a true (not a pseudo) random number and the quality of the true

randomness directly affects the encryption strength.

We are not deeply investigating the topic of cryptographic random number generation but as-

sume the problem is solvable with acceptable quality and reasonable resources. On the C side,

we use the random key generator of the OpenSSL (Open Source Secure Socket Library) library

(EVP_CIPHER_CTX_rand_key()) for now. Of course, the C code is only used for testing and de-

bugging and the random keys for real documents will be generated by the Java code of the

access client.

4.2. Symmetric Encryption

 AES-128 (Advanced Encryption Standard, Federal Information Processing Standard U.S.

FIPS PUB 197, November 26, 2001).

Symmetric encryption is used for encrypting the data in files and directories. We use AES,

which is the Advanced Encryption Standard, standardized by NIST (National Institute of Stan-

dards and Technology) (FIPS-197). See also Wikipedia. AES seems to be widely used as secure

and is generally regarded as the successor to DES (Digital Encryption Standard). AES was there-

fore an easy choice. However, we needed to make a few additional decisions, which are less

obvious.

14

One is the encryption key length. AES supports key sizes of 128, 192, and 256 bit. 128 bit are

viewed as providing strong encryption and we assume 128 bit requires less CPU (Central

Processing Unit) time compared to longer key lengths. Furthermore, the Sun Java Runtime En-

vironment comes standard with 128-bit support but requires extra installation steps for 192 and

256-bit support. The only reason for longer keys seems to be for applications where data needs

to remain secret for several decades into the future. This is not the case for our prototype.

Even a future system will likely be designed to support key refreshing to allow users to periodi-

cally re-encrypt stored files with stronger keys over time. Our conclusion is that for the pur-

pose of proof of concept of this prototype, 128 bit encryption keys are adequate.

Next, we need to consider that AES is a block cipher, which encrypts exactly 16 bytes (no more

and no less). We therefore need to decide on a method on how to use a block cipher algorithm

for arbitrary file lengths. Just applying AES on each 16-byte block of a file individually is a bad

idea. Because the same input always generates the same output, certain regularities of the

input file are still visible in the output file. An good example is shown in Wikipedia. The same

page also contains a good overview of better methods.

We decided for Cipher Feed-Back (CFB). The corresponding function in the OpenSSL library is

called EVP_aes_128_cfb128. The first 128 stands for the encryption key length and the second

128 indicate the window size of the CFB algorithm (see the above Wikipedia page

(http://en.wikipedia.org/wiki/Advanced_Encryption_Standard) for details). Smaller windows

increase the computational overhead without apparent advantages for encryption strength.

Finally, we need to decide on the value used for the initialization vector (IV), which is needed

for the CFB algorithm. This value is not critical for encryption strength. One should only avoid

using the same IV/key pair to encrypt more than one set of data. Since we use different ran-

dom keys for each file and directory, this is not a problem for our application. We therefore

initialize the IV with all zeros.

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

15

About CPU time required for encryption/decryption: Encrypting or decrypting a 5-MB file takes

less than about 100ms on a Dell Dimension E520 workstation (ws01). Even when executed on an

older PC or laptop with a Java layer between we can expect that the bottleneck will be the

communication bandwidth and not the encryption and decryption speed.

For the Java version of the library, we tested two different symmetric encryption providers:

BouncyCastle and Sun JCE (Java Cryptographic Extension). Both implementations are using the

same AES/CFB algorithms with no padding as the C version of the library, and are wrapped in-

side a Java JCE cipher object.

From a functional point of view, there is no difference in encoding and decoding results as for

the C version, which means we can use the C version to encode and the Java version to decode

and vice versa.

From a performance point of view, there are significant differences in both offset and through-

put speed. The throughput of both Java providers are slower by a factor of two compared to

the C version.

The offset to initialize the libraries show differences as follows:

1. C Version: < 20 ms

2. BouncyCastle Java Version: ~ 600 ms

3. Sun JCE Java Version: ~ 300 ms

16

4.3. Asymmetric Encryption

 RSA-2048

Asymmetric encryption is used for the cryptographic links to the root directories. This allows

user A to grant access to user B without knowing user B's private key. Knowledge of user B's

public key is sufficient to create the necessary cryptographic link.

The RSA algorithm requires a padding parameter. We use RSA_PKCS1_PADDING, which appears

to be the most commonly used. The two additional parameters needed by the RSA algorithm

are key length and the public exponent. The PKCS12 (Public Key Cryptography Standards Ver-

sion 12) certificate issuer that creates the user’s personal certificate determines both these

values. For the prototype we will use 2048 bit key length (which is considered strong encryp-

tion) and uses a public exponent of 65537. Note that some people consider 1024 key length is

considered sufficiently strong.

As AES, RSA is a block cipher algorithm which means it operates on a fixed block length. Unlike

AES, the RSA block length is tied to the key length and the padding algorithm used. For

RSA_PKCS1_PADDING the block length is 2048/8-11 = 245 bytes (see

http://openssl.org/docs/crypto/RSA_public_encrypt.html for more information). As we only

use RSA for the encryption of random AES keys (of length 128 bit = 16 byte), no chaining is ne-

cessary, i.e., all data can be encrypted in a single block.

The encrypted output data size is always equal to the key length (256 bytes in case of a 2048-

bit key). Note, that the RSA algorithm creates different output when called multiple times,

even when the same input data, key, and parameters are used. However, all the different out-

puts generated will decrypt to the same (correct) clear text.

http://openssl.org/docs/crypto/RSA_public_encrypt.html

17

4.4. User Certificates

In order to use the SDF, users need a public and a private key. A convenient way to store both

keys is the standard PKCS12 personal certificate format (see, for example,

http://en.wikipedia.org/wiki/PKCS12). PKCS12 files, which typically have the file extension

.p12, store the public key in clear and the private key encrypted with a pass phrase. Using this

standard file format allows us to use an existing certificate authority to create user certificates

(including the user's public and private keys). The OpenSSL library provides the functionality to

decrypt and parse PKCS12 files. The user certificates will be used in a number of ways:

 A hash of the user's public key is used to create the physical file name of that user's root

directory.

 A hash of two user's public keys is used for the physical file name of shared root directo-

ries.

 Other users to create cryptographic links for this user use a user’s public key.

 User certificates are used to sign files that that user created.

 The storage nodes will check the digital signatures of files to enforce write policies (cur-

rently, only the owner of a file can modify or delete that file).

http://en.wikipedia.org/wiki/PKCS12

18

4.5. Cryptographic Hash Function (Message Digest)

We use cryptographic hash functions (also called message digests or md) in two places: 1) to

derive a physical file name from one or two users' public keys, and 2) for digitally signing the

content of files or directories. A cryptographic hash function has the following properties (from

Wikipedia):

1. It is computationally infeasible to find a message that corresponds to a given message

digest.

2. It is computationally infeasible to find two different messages that produce the same

message digest.

3. Any change to a message (including single bit changes) will, with an exceedingly high

probability, results in a completely different message digest.

For deriving a physical file name from public key(s) we don't need property 1 but we do need it

for digitally signing a file. For simplicity, we use the same algorithm in both cases.

MD5 (Message Digest Algorithm 5) is a popular algorithm used widely on the Internet but today

considered not secure. SHA1 (Secure Hash Algorithm) was designed to be the successor of MD5

and standardized by NIST. SHA-1 generates 128-bit output. Later, several new SHA versions

were added to generate longer output: SHA-224, SHA-256, SHA-384, and SHA-512. Today, there

are some concerns about the security of those too but apparently no successful attack has yet

been reported. In 2007 NIST started an open competition for a new SHA-3 algorithm.

For now, we are using SHA-256, which in OpenSSL is called sha256.

Here are two examples, generated with SHA-256 (output in hex):

19

 "Net-Scale" generates:

972a7bbd7de162694142b35a298e111adf9429dbddb8ff311bb2467b78edf34b

 "Net Scale" generates:

66e27f6180abab57b328471f90c5123251a60c9849647c6fecd6316fe5bb10a5

4.6. Cryptographic Links

A cryptographic link from a secret key k1 to another secret key k2 (k1•k2) lets anybody in pos-

session of k1 derive k2 but not vice versa. In the present implementation we achieve this in one

of two ways:

1. Symmetric cryptographic link: k2 is encrypted using k1 as the encryption key. This re-

quires the party who creates the link to know secret k1.

2. Asymmetric cryptographic link: k1 is the private key of a public/private key pair and

the public key p1 is used to encrypt k2. The party creating the cryptographic link therefore

does not need to know secret k1.

We use cryptographic links for secure sharing of documents and for inheritance of access privi-

leges in our secure directory tree.

20

4.7. Secure Sharing

The most basic case is shown in Figure 1. A document is encrypted using a random secret key

kd. That secret key is never stored nor is it directly shared with the users who have access to

that document. Instead, each such user receives a cryptographic link CLi from his or her private

key ki to the document key kd. This allows users to calculate the document key kd and there-

fore gives any user in possession of a cryptographic link to that key (kd) access to the document

itself.

 Whenever the document is modified, it will be encrypted with a new random key and all

cryptographic links to that key are updated accordingly.

To revoke access rights of a user to that document that user's cryptographic link to the docu-

ment key is simply removed. One can argue that the user could have stored the secret docu-

ment key kd locally and can therefore continue to read the document, even though his or her

cryptographic link was removed. That is correct and could be prevented by automatically re-

Figure 1. Cryptographic links used for secure sharing of a document. The document is en-

crypted using random secret key kd that is not shared with the users. Instead, each user gets a

cryptographic link (CL1…CL3). Together with their private secret keys (k1…k3) users can derive

the secret key kd upon reading the document. Note that kd is never stored anywhere.

Shared
docum entUser 1 k1

kdUser 2 k2

User 3 k3

CL1

CL2

CL3

21

encrypting the document with a new secret key whenever the access rights to it change. How-

ever, we argue that this does not add significantly to the security of the system. That's because

if the user had bad intentions in the first place, as evidenced by him or her remembering the

secret document key in the first place, that user might as well store the entire document at

that time with no extra effort.

22

4.8. Inheritance of Access Rights

Figure 2 shows a case where access rights are automatically inherited over multiple directory

levels. The content of each directory, i.e., its pointers to subdirectories and files, is encrypted

using a random secret key kfi. Each user gets a cryptographic link to the secret key of the high-

est directory level they have access. Each directory has a cryptographic link from its secret key

to the secret keys of all its subdirectories and files. In the case shown in Figure 2, user 1, for

example, can use cryptographic link CL
1
 to obtain secret key kf1. That secret together with

cryptographic link CLf1 is then used to obtain secret key kf2, which in turn, together with CLf2 is

used to calculate kd, which is used to decrypt the document.

These examples show how document and directory information can be stored and shared se-

curely, guaranteeing that only parties in possession of a legitimate private key can access that

data. In the next section we discuss the management of access rights in general, including

modification rights and the right to grant other users access.

Figure 2. Secure inheritance of access rights over multiple directory levels.

Direct ory 1 Shared
docum entUser 1 k1

kf1User 2 k2

User 3 k3

CL1

CL2

CL3

Direct ory 2

kf2 kd
CLf1 CLf2

23

The use of cryptographic links for inheritance of access rights and secure sharing of data is in-

spired by work described in [3] and [5].

4.9. Security Model

4.9.1. Protection Against Unauthorized Data Read Access

As shown in the previous section, this protection is tied through a series of cryptographic links

back to a private secret key which only the user holds and which is never stored in the net-

work.

4.9.2. Protection Against Unauthorized Data Modification

No cryptographic technology alone can protect against data loss, such as a hacker breaking into

a system and erasing all data. However, cryptographic technology can be used for protection

against unauthorized data modification without other users noticing, by signing documents that

were written. This digital signature can be tied back to the same private keys of the users,

which are used, for secure read access.

In addition, the owner of a directory or file can digitally sign the cryptographic links granting

read and write access such that each user can detect unauthorized data modification by either

a party without read nor write access or by a party with read but no write access to a file or

directory.

In a secure system, such unauthorized data modifications must be treated equivalent to data

loss (e.g., disc parity error due to physical data corruption).

24

4.9.3. Protection Against Data Loss

Protection against data loss, both physical data loss as well as unauthorized data modification

by an adversary, is achieved through data redundancy in the network, i.e., by storing each file

on multiple storage nodes.

Data loss on a single storage node then only leads to a reduction of the redundancy level but

not to actual data loss. A system can detect this and take steps to restore the desired redun-

dancy level automatically. However, in the interest of time, such steps will not be imple-

mented in the present prototype system.

Finally, note the single point of failure if all storage nodes use the same or related server soft-

ware. The only protection against this case is through use of diverse software written by inde-

pendent parties, which is outside the scope of this project.

4.9.4. Private Key Protection

As so much of the system security depends on the users' private keys, we need to look at how

to protect those keys. If, for example, a hacker succeeds in stealing a private key from a user,

that hacker gains full access to the same privileges the user has.

In this prototype system, private keys will not be stored on any laptop or PC but on a read-only

USB dongle. Commercial dongle products exist which store a pass phrase protected version of

the private key and do all the encryption processing, which involves the private key on the

dongle itself. If the user enters the wrong pass phrase n times the dongle self-destructs. It also

self-destructs upon attempt to physically open it. This makes it virtually impossible to steal a

user's private key, even if the user is negligent (short of writing down their pass phrase on the

dongle and leave the dongle laying around).

25

Since this technology is commercially available there is not much value in testing it in the

present prototype and in the interest of time we decided to store the user's private keys in

clear on a read-only USB dongle. Each user will be handed three copies of that dongle, one to

use and two to store in a safe place of the user's choice, preferably not in their house and not

in their office.

4.9.5. Key Recovery

In a future system we anticipate users would backup their private keys differently: Threshold

methods are well suited for this purpose. Users spread out their secret private key over n to-

kens, let's say 10. To reconstruct their secret key they need access to at least k of those to-

kens, let's say 3 but any k tokens will work. Users will trust friends or colleagues or companies

that provide that service with safekeeping one of the n tokens. The ten parties do not know of

each other. Unless at least 8 parties loose the token they were trusted with safekeeping, the

user can still reconstruct their private key. On the other hand, no single party can break into

the user's files. At least three of them would have to stick together. However, this scheme will

not be implemented in this prototype.

4.10. Access Rights

In the general case, one can imagine a large number of fine-grained access rights. However,

three access rights (per file and directory) are probably most important:

 Read access right.

 Write access right.

 Right to modify other user's access right.

For simplicity reasons only read access control was implemented in this prototype.

26

5. Architecture

The main architectural goals are:

 Provide ease of use, avoid client software certification and installation processes, and

provide platform independence through zero foot print web access.

 Achieve high system availability through geographical storage node distribution providing

redundancy for network outage, power outage, and hardware failure.

 Guarantee privacy through end-to-end security.

 Guarantee data integrity through end-to-end security.

 Protect against data loss through redundancy with geographical data distribution and

write privilege enforcement by the storage node server software.

5.1. Overview

Figure 3 shows an architecture overview with a single storage node and a single user client. A

user starts by accessing the web server URL (Uniform Resource Locator) that loads the Net-

Scale web client to the browser and starts executing its code. The web client consists of static

code including Cascading Style Sheets (CSS) and an initially empty HTML (Hyper Text Markup

Language) page. All functionality is provided by the dynamic code that includes JavaScript and

a Java applet. The JavaScript code creates HTML elements dynamically and places or moves

them in the browser screen to create the desired user interface and effects. The CSS code de-

fines the graphical attributes of the HTML objects. The JavaScript code further interacts with

the Java applet.

The Java applet accesses the encrypted data on the storage node through the web server and

the Net-Scale code connected to the web server. All data encryption and decryption is per-

formed by the Java applet on the user PC or laptop. The Net-Scale code on the server node

27

provides only minimal functionality, as explained later. WebDAV (Web-based Distributed Au-

thoring and Versioning) is used as the transport protocol. Only a small subset of WebDAV is

needed. Not used from WebDAV, in particular, are encryption (as the data is already end-to-

end encrypted) and authentication. Nevertheless, WebDAV has the advantage for our purpose

of being a well-specified and documented protocol, running on top of HTTP , which minimizes

firewall issues, and lets us reuse existing web server plug-ins.

Figure 3. An architecture overview, illustrated here with a single storage node (left) and a sin-

gle user client (right). Orange components are built by Net-Scale.

User PC or Laptop

Net -Scale
Java

applet

Net -Scale
Java-
Scrip t

Net -Scale
HTML/

CSS

Local
d isk

HTTP

USB dongle

Storage node

Encrypt .
data

Net -Scale
code

API WebDAV

Web
client

 Web server
Web browser

(encrypt ed
dat a)

28

The Java applet further can access the local disk(s) of the user PC or laptop. Together with the

user interface layer controlled by the JavaScript code, this provides the bulk upload and down

load capability (from and to the network storage). Finally, the Java applet reads the user's pri-

vate key when needed which is stored on an external USB dongle. The private key is at the root

of the end-to-end security infrastructure and is the only secret a user needs to keep. For this

prototype system we will use regular USB drives as a dongle but much more secure USB devices

for storing private keys exist. However, the private key is never stored on any disk. The USB

dongles therefore are the only physical item users need to protect and without the dongle, us-

ers cannot access any data.

29

Figure 4 shows a larger system with multiple storage nodes and users. Anticipated for this pro-

totype system are four storage nodes and approximately ten users.

Figure 4. Prototype system overview. The storage nodes are intentionally operated from places

with (unreliable) consumer Internet connection and advertise their current IP address to a Dy-

namic DNS (DDNS) service provider. This allows the users to find the storage nodes even when

their IP (Internet Protocol) addresses change frequently.

In t ernet

User 1

User 2

User 3

User 10

Storage
Node 1

(Net -Scale)

Storage
Node 3

(DC Area)

Storage
Node 4

(Swit zerland)

Storage
Node 2

(New Jersey)

Dynam ic
DNS (DDNS)

Service Provider

Does not have t o be secure or t rusted Must be secured

USB dongles

30

Storage nodes are intentionally operated from consumer Internet connections with limited

bandwidth and network reliability. The prototype therefore has to prove that this architecture

can provide high reliability and access bandwidth even in these conditions. Because most con-

sumer Internet connections have no-static IP addresses, the system includes the use of a Dy-

namic DNS (DDNS) service provider.1

A note about firewalls: no firewall required to make the system secure. However, a storage

node will still work, even if installed behind a firewall, as long as the firewall is configured to

pass HTTP (Hyper Text Transfer Protocol) requests to the storage node computer. This will re-

quire some manual firewall configuration by the user who hosts the storage node.

1 Note about access nodes: Readers who are familiar with the Net-scale Statement of Work

for the Seedling project (“The Storage Network of the Future”, Version 2.2) may miss the green access

nodes shown in Figure 2 of that document. This is not because the access nodes are dropped from the

general concept but they will not be implemented in this project. Their functionality is split between the

storage nodes and the user clients as follows: all web content, including JavaScript and Java code is repli-

cated on all storage nodes and all storage nodes include a web server to serve that content to the clients.

The Java part of the web clients will directly communicate with the storage nodes instead of going

through access nodes as intermediaries. Access nodes will be required for future hand-held web applica-

tions, which are not powerful enough to handle all client functionality on the device.

31

5.2. Inheritance of Access Rights

The general case of access control essentially requires an individual access control list for each

file and directory. This involves a complex management overhead both for the system as well

as for the users. Things become quickly complicated as soon as users start moving files within

the directory tree. For example, what happens to the access control rights of document X if it

is moved from folder A to folder B. Does it keep the original access control list or does it inhe-

rit any access control properties from folder B? How do users with access rights to document X

know where it was moved?

For this prototype system we simplified the access control mechanism both to improve the user

experience and also to limit the implementation cost. Any such simplification, of course, bears

the danger that not all required cases can be satisfied. We believe, however, that the system

we chose will satisfy the vast majority of all cases. This assumption will be put to the test by

the prototype system usage.

Our simplified access control system assumes the presence of a directory tree. It has the fol-

lowing properties:

1. Inheritance of access rights. All its subdirectories and files inherit access rights as-

signed to a directory. For example, if John grants Fred access to directory

/john/projects/dna/, then he has automatically access to /john/projects/dna/doc/ and

/john/projects/dna/papers/ but not to /john/projects/lagr/. Furthermore, if John moves

a file from the dna/ to the lagr/ directory, then Fred looses his access rights to that file. If,

on the other hand, John adds a new file to the dna/ directory, then Fred will automatically

gain access to that new file.

2. Confidentiality of access rights. If John grants Fred access to /john/projects/dna/,

then John cannot see who else has access rights to the same directory (or file).

32

5.3. Encrypted File System

The user data is stored in an encrypted file system that is overlaid on top of a regular file sys-

tem. The content of user directories and user files are stored in regular files as shown in Fig-

ure 5.

In addition to the directory or file name and content which both are encrypted with secret key

k
d
, each file also stores the digital signature of the owner and a number of cryptographic links

to the secret key k
d
. The secret key k

d
 is not stored at all. Therefore, the cryptographic links

provide the only means to access the user data. Secret keys and physical file names are chosen

at random. The secret key k
d
 changes each time the user file or directory is modified. Some-

body looking at the file system will see a collection of physical files with random file names. He

or she can see who owns these items but cannot see if they represent files or directories and

cannot recreate the directory tree nor access any user data.

33

Size of it em header (in byt es)
(file size m inus encrypted data)

SDF Version
(current version: 1)

Next free
cryptographic link (CL) ID

ID of CL 1

Size of CL 1 Field 1 (in bytes)

Type of CL 1
(0= sym m et ric, 1= asym m et ric)

CL 1 Field 1
(actual link)

Signature and
public key of owner

Encrypted
data

Repeat last 9 (b lue)
fields for CL 2, CL 3, ...

4 bytes, b ig-endian

4 bytes, b ig-endian

4 bytes, b ig-endian

4 bytes, b ig-endian

4 bytes, b ig-endian

2 bytes, b ig-endian

Variab le length

Variab le length

To be added separately
and lat er

SDF It em

CL 1 Field 2
(back link key) Variab le length

Size of CL 1 Field 2 (in bytes) 2 bytes, b ig-endian

Size of CL 1 (in bytes) 2 bytes, b ig-endian

CL 1 Field 3
(back link a) Variab le length

Size of CL 1 Field 3 (in bytes) 2 bytes, b ig-endian

CL Field 1 (actual link)
It em key (random , sym m et ric),

encrypted wit h CL parent 's it em key

Sym m et ric CL

CL Field 3 (back link a)
secure file nam e of CL parent ,
encrypted wit h back link key

CL Field 2 (back link key)
random sym m et ric back link key

encrypted wit h t h is owner's public key

CL Field 1 (actual link)
It em key (random , sym m et ric),

encrypted wit h CL parent 's public key

Asym m et ric CL

CL Field 3 (back link a)
CL orig inat ing user's client cert ificate,

encrypted wit h back link key

CL Field 2 (back link key)
random sym m et ric back link key

encrypted wit h t h is owner's public key

CL 1 Field 4
(back link b) Variab le length

Size of CL 1 Field 4 (in bytes) 2 bytes, b ig-endian

CL Field 4 (back link b)
Not used

CL Field 4 (back link b)
It em key of CL parent ,

encrypted wit h back link key

Figure 5. Structure of a secure file, which can represent either a clear file or a clear directory.

34

5.3.1. Directories

A user directory is just like a user file, except that the data part contains a list of pointers to

the files and subdirectories of this directory. Such a pointer consists of the physical (random)

file name of the user file or user subdirectory and the index of the cryptographic link to be

used in order to access the data of that user file or user directory. This is illustrated in Fig-

ure 6.

Repeat above 6 it em s
for each d irectory

Secure file nam e of ch ild
(physical random file nam e)

ID of m y CL

Clear it em nam e
(file or d irect ory)

Ot her it em inform at ion

4 bytes, b ig-endian

To be added lat er

Variab le lengt h
(zero t erm inated st ring)
Variab le lengt h
(zero t erm inated st ring)

Directory
(unencrypted dat a of a d irect ory it em)

Size of d irectory ent ry
(in bytes) 4 bytes, b ig-endian

Type of ch ild
(0= file, 1= directory)

4 bytes, b ig-endian

Figure 6. An encrypted user directory contains pointers to its files and subdirectories in the

encrypted data part.

35

5.3.2. Root Directories

The above user directory structure allows anybody with access to a user directory to navigate

its entire subdirectory tree by just following the pointers and resolving the cryptographic links

along the way. However, how do we bootstrap this process or, in more practical terms, how

does a user know the physical file name of his or her home directory and what is the secret to

access the home directory's cryptographic link?

In this implementation we use a hash code of the user's public key as the physical file name of

the home directory and the user's public key for the creation of the first cryptographic link in

that home directory. That cryptographic link will therefore be an asymmetric cryptographic

link while most other cryptographic links will be symmetric. Note, that in principle, all crypto-

graphic links could be made asymmetrical but that would require unnecessary CPU overhead.

In order to read their home directory, all users need to know is their public and private key.

Both are part of their user certificate, which is stored in the external USB dongle. User clients

therefore do not need to store any configuration information at all. All information needed to

bootstrap the process of navigating a user's home directory is available on the USB dongle. Any

additional user settings can be stored in the user's directory tree in the network.

36

5.3.3. Share Roots

How is the process of sharing files or directories through cryptographic links bootstrapped? For

example, how does Fred know what files and directories Mary allows him to access? In this im-

plementation we use a hash code of the combination of Mary and Fred's public keys to create

the physical file name of a shared root directory. Both Mary and Fred have cryptographic links

to that user directory and Mary is the owner. Each time Mary wants to share a user file or di-

rectory with Fred, she will add a pointer to that user file or directory into the shared root di-

rectory. Fred therefore automatically sees all items Mary shares with him.

All Mary and Fred need to access that directory is their own private and public keys and the

other person's public key. The necessity of a central user database can therefore be avoided.

For example, Mary knows her own private and public key from her own USB dongle and she

knows Fred's public key from Fred's certificate which also lets Mary verify that she uses Fred's

correct public key and not that of a man in the middle. If and how Fred's certificate is made

known to Mary is an infrastructure question. In this prototype we will use a publicly available

database of all user certificates. In a more general case, user certificates may not be published

and the decision left up to the users themselves with whom they would like to share their cer-

tificates.

Note, that different directories will be used for files Mary shares with Fred than vice versa.

This is to distinguish read and write privileges.

Also note that not all possible share root directories from all possible user pairs need to be

created up front. Share root directories can be created on the fly, as needed.

37

5.3.4. Back Links

The cryptographic links shown in Figures 5 and 6 contain an encrypted back link to their parent

directory. The link consists of the physical file name of the parent directory, encrypted with

the directory owner's public key. This lets the owner of the directory navigate the directory

tree backwards but not anybody else. This capability is needed, for example, if we want to dis-

play to the owner with whom he or she shares a certain directory.

5.3.5. File System Efficiency

Long term, the system may be made more efficient by implementing the encrypted file system

natively instead of overlaying it on top of a regular file system. This would also allow for mak-

ing the smallest encrypted unit a block on the disk instead of an entire file. The latter will al-

low for secure efficient revision control by allowing a node to store incremental changes to a

document. However, the technology behind this is well understood and does therefore not

need to be tested as part of this prototype.

5.4. Parallel Data Read with Automatic Load Balancing

Parallel data retrieval is done as follows: The access client requests the first b bytes from the

first server in the list. Then, without waiting for the request to complete, it requests the fol-

lowing b bytes from the second server in the list. This continues until all servers are busy

processing requests for this client.

As soon as the first server completes its request the client will request the next b bytes (not

yet requested) from that server. This continues until requests for all data bytes have been is-

sued.

38

While the client waits for the last requests to complete, it monitors the time each open re-

quest has been pending. If one or more requests have been pending for more than t
p
 seconds

and free storage nodes are available (i.e., storage nodes without pending requests by this

client), then the client will issue a second request for those blocks to free servers until either

all servers are busy again or all data is retrieved.

5.5. Data Write

For a data write to complete, the data must be successfully written to at least two storage

nodes. The other storage nodes will subsequently automatically synchronize without the access

client being involved.

The minimum of two storage node requirements is to avoid a single point of failure (even

though it might only be very short in duration). On the down side, this will make write opera-

tion likely twice as slow because they will likely be limited by the upload speed of the user's

Internet connection. The automatic synchronization in the network avoids this process from

becoming even slower and it allows write operations to complete even if not all storage nodes

are on-line.

This raises one question: what happens if a user wants to read a document which has recently

been changed and whose changes are not propagated to all storage nodes yet. The access

client requesting the modification time of that document from all storage nodes that are online

handles this. It will then issue data requests only to those nodes with the newest modification

time. To guarantee equal modification time for all copies of a document it is being created by

the first server which receives a new document or document version and then reused by all

other storage nodes.

39

This still leaves the question of what happens in the unlikely event of all storage nodes with

the latest document revision being off line at the time a user wants to access that document.

In that case the user will read the old document version. It will feel to the end user as if the

document was not yet updated.

Finally, we need to look into what happens if a user modifies the document again while all sto-

rage nodes with the latest version are off-line. This case will be handled automatically by use

of the modification times with the effect that this latest write operation will overwrite the

previously (but currently inaccessible) latest document version.

5.5.1. Transactional Nature of Write

The write process described above is of transactional nature. This means if a write succeeds for

one storage node but the access client cannot write the document successfully to a second sto-

rage node, then the overall write operation fails and the changes written to the first storage

node must be undone. Each receiving storage node will therefore lock the file (to be modified),

queue the received changes, wait for confirmation from the access client, and then commit the

changes and unlock the file. If the connection closes before confirmation is received, then the

changes are discarded.

40

This, of course, still leaves us with a Byzantine Generals' Problem: What happens if the access

client successfully completes a write operation to two storage nodes and just informed the first

node of that fact. However, the network connection to the second node is no longer available

and the second node therefore never receives confirmation. The first node will act as if the

write operation succeeded while the second node will discard it. In this case, the access client

will inform the user that the write operation succeeded, possibly with a warning that this hap-

pened with temporarily reduced data redundancy. The changes will then propagate from the

single node to all other nodes, except if the single node incurs a catastrophic failure before it

could transfer the changes to the other nodes.

5.6. Network Data Synchronization

After the access client succeeded in writing a document (or directory) to two storage nodes,

those will enter that document into an update queue. Each document in that queue will main-

tain a list of other storage nodes that have already confirmed receipt of the new document.

Once all storage nodes confirmed receipt, the document will be removed from the queue. If a

receiving server reports a newer modification time stamp for that file, then, of course, it will

not be transferred but that node will still be entered into the list of that file.

Therefore, for each new or modified document (or directory), there will be two storage nodes

trying to propagate the modifications to all other nodes.

41

Each node will process the update queue as fast as possible but will never issue more than one

request to another storage node at a time. Since most likely the network bandwidth or possible

CPU resources or disk speed on the receiving storage node are the bottleneck, issuing multiple

parallel requests would not make the process any faster, just increase the overhead for con-

nection management on both sides.

If the document is locked by the receiving storage node (e.g., because another node is already

sending the update), then the queue processor will try again later.

More sophisticated methods are conceivable where document update spreads out in a waterfall

principle. In order to focus resources on the main short-term goals, such methods will not be

implemented in this project.

5.7. End-to-End Security

The storage nodes do not possess any secret keys at all, not even temporarily. Data decryption

can only take place on the user side by the client software. The storage nodes do not have a

traditional access control nor authentication mechanism. If a user asks for a particular file by

its physical (random) file name, the storage node will return that file without any further au-

thentication checks. Access and sharing is controlled by means of cryptographic links, not by

sharing secret keys. This allows a user to later revoke or modify another user's access rights

without re-encrypting all files and redistributing keys.

Therefore, most parts of the system do not need to be secure or trusted, as pointed out in Fig-

ure 4). In particular, this is true for all components in the network, including hardware, soft-

ware, networks, and protocols. Security is mostly concentrated in the USB dongle that is in

physical possession of the user.

42

Furthermore, users do not need to login. In fact, there is no concept of login or logout. Storage

nodes will find a user's home directory based on the public key provided by the user client. The

public key is also stored on the USB dongle. Therefore, to be able to access their data, users

need the USB dongle to be plugged in to their laptops but will not need to login at all. We ex-

pect this to be a nice tradeoff for the inconvenience of being forced to carry the USB dongle to

all locations from where the storage needs to be accessed.

Finally, since all encryption and decryption processing is done on the client side, and since no

user authentication needs to take place, the storage nodes are reduced to simple data input

and output, similar to a simple web server. This requires very low CPU and memory overhead

and makes this design therefore highly scalable and efficient and low cost to operate. Most of

the computing is done on the client where it is much cheaper than on the server side and high-

ly distributed.

5.8. No Single Point of Failure

The system has no single point of failure with one exception. This is through the fact that we

are using the same server software for all storage nodes. If a security flaw were to exist in the

server software (Net-Scale software or web server software) which lets an intruder break into a

storage node, then a hacker could create a script which could break into all storage nodes in

parallel and erase all stored data within seconds. The only way to avoid this single point of

failure is by using software diversity for the server software, which could most effectively be

achieved, by using software from different origins for different storage nodes. This is beyond

the scope of this project, however.

43

5.9. Defense against Denial of Service Attacks

Denial of service attacks attempt to flood a server with requests thereby exhausting its re-

sources and making it unavailable for service to legitimate users. Since the physical file names

on our storage nodes have random file names that are only known to legitimate users who

could successfully read the user data in the parent directory, any intruder would have to ran-

domly guess file names. This makes it fairly simple for storage nodes to detect illegitimate us-

ers and initiate defense mechanisms, e.g., by temporarily blocking access from intruder's IP

addresses. However, such techniques will not be implemented in this prototype.

44

6. Secure Distributed File System Design

6.1. Parallel Data Read Parameters

The initial values of the above two parameters will be:

 Block size b: 64 Kbytes (65,536 bytes)

 Wait time t
p
: 2 seconds

The above values have been determined under the assumption that the data retrieve band-

width for a storage node (which could be the cable modem upload speed) is approximately

250 Kbytes/sec.

Note, that this request allocation algorithm of the last phase, i.e., the wait phase, could be

greatly improved. However, that would add complexity to a feature that will not be very im-

portant and will therefore not be done in this project.

6.2. Physical File Names

All (encrypted) user data is stored on a separate disk which is mounted to /sdb. That directory

(i.e., the root of the data disk) has two subdirectories:

 /sdb/dat/: Contains all encrypted user data, i.e., permanent data.

 /sdb/que/: Contains the transaction queues, i.e., temporary data.

All directory and file names below are random byte sequences. To ensure that we don't create

any illegal file names (e.g., with a '/' character in them), the random bytes are encoded in

their two-character lower case hexadecimal representation before used as a physical file

name.

45

Hexadecimal is not the densest representation possible, i.e., we are using a bit more charac-

ters for file names than necessary. However, the loss is not huge, the method is very simple,

and we can save on programming, testing, compliance between C and Java, and debugging

overhead which more complicated encodings would bring with them.

The physical file names and their directory structure are chosen at random and have no corre-

lation with the file and directory names or the directory tree that they represent. In principle,

we don't need a physical directory tree at all as directories are also represented by files, and

all files could be stored in a single directory. However, traditional file systems tend to become

inefficient if the number of files per directory grows beyond a few thousand.

6.2.1. File Name Spreading

From the client's point of view, each encrypted file will have a random file name. However,

behind the scenes, the storage nodes will spread these files over multiple directory levels to

avoid creating too large directories that would make most file systems inefficient. The spread-

ing is done by applying a non-cryptographic hash function to the directory name. For selecting

the optimal point between directory tree depth and number of subdirectories per directory we

would need to understand the overhead involved for finding an item in a directory (we assume

the OS (Operating System) performs a linear search in memory) and the overhead involved in

following directory pointers on the disk (which assumes disk seek operations to the right

blocks).

46

For now, we selected 256 subdirectories and five subdirectory levels. This means each directo-

ry name consists of two hexadecimal characters and we can store a total of over 200 trillion

(1012) files before the underlying file system becomes inefficient.

The function for file name spreading is called nssdb_fname_to_path(). Here is an example in-

put and output:

 File name: a2c6e97f3d16231d

 Path: /sdb/dat/61b9/3c2f/c245/48ab/7e71/a2c6e97f3d16231d

The directory tree depth in this prototype is fix and consists of four (4) levels. We assume an

average of 1,000 items per directory is efficient. This would then allow us to store 1012 files

before the system becomes inefficient. If we further assume an average of 100,000 files and

directories per user, we could accommodate up to 10 million on a storage node. These settings

e6/ 48/

27/ dd/ 8d/

1e/ 23/9c/ 52/

736001c... 5129f9ee...

/sdb/dat /

aa0f65... c5ec7... 0 f0983... a1d9f..

Figure 7. Example of a small physical directory tree that is used to store encrypted files which

form the actual user directory trees. The user directory trees are not correlated to this physi-

cal directory tree at all. To conserve drawing space, one directory level is omitted and the file

names are shortened.

47

are more than sufficient for the present prototype system and can be changed at any time in

the future to accommodate larger user communities. Note, that the actual capacity will be

somewhat smaller as for practical reasons we chose 26, 676, and 1,000 instead of always 1,000

items per directory (see next section). This results in about 109 files or 10,000 users, which is

still more than sufficient for the present prototype. Figure 7 shows an example tree.

6.3. Root File Names

Root file names are created through a cryptographic hash function from a user's public key. In

case the root is shared between two users, then the hash function is applied to both users' pub-

lic keys. The user who owns the node is hashed first, followed by the guest user.

The hash algorithm used is SHA-256, which generates an output of 64 bytes, which in turn will

become a file name of 128 hexadecimal characters. Here's an example:

2c528bdd330c183656a944cab15b0d2f6d2a003a25736b51fdc74515f6c723b3

This may be more than we need. However, we need to ensure the chances of any collisions,

i.e., two different users' public keys or key combinations generating the same hash code, is

practically zero. Somebody with a deeper understanding of hash code collisions can probably

guide us to a more optimal point but for now we stay on the side of caution.

48

6.4. Regular File Names

Regular file names are created with a cryptographic random function, i.e., the AES random key

generator of OpenSSL. We are not sure yet if we need to take advantage of the cryptographic

nature of the randomness yet or not. Cryptographic randomness allows us to assume that it will

be nearly impossible for an adversary to guess a file name.

The length of the file name is always 40 characters. The first 8 are the lower case hexadecimal

representation of the node ID. The other 32 characters are the lower case hexadecimal repre-

sentation of 16 random bytes. The file names have no prefix or postfix (extender). The 16 ran-

dom bytes create a name space of over 1038. Here is an example file name for node with ID 12:

0000000c745a1e30e24aec224325b2c57be6cb1a

49

7. Storage Node Design

7.1. Storage Node Hardware

Each storage node consists of the exact same hardware configuration that is pre-in-stalled and

preconfigured by Net-Scale. People who host a storage node will not have to install or confi-

gure any software.

Figure 8. A possible storage node hardware configuration: Dell Inspiron 520s slim line design,

which does not take up a lot of space. The software is installed and configured by Net-Scale

and no keyboard or screen is necessary for operation.

50

The minimum technical specs are:

 State-of-the-art but not a high-end microprocessor, e.g., Intel Pentium dual-core, 1MB

L2, 1.80GHz.

 1GB memory.

 100GB internal hard disk for OS and software.

 1TB secondary internal hard disk for data storage.

 100Mbit network card (no wireless LAN).

 2 USB2 slots for optional future external storage extensions.

 Must be able to run Ubuntu 8.04.

The expected total hardware cost is $1,000 or below. A possible configuration with Dell Inspi-

ron 520s (slim line design) is shown in Figure 8.

7.2. Storage Node Software Configuration

 OS: Ubuntu 8.04 server

 srvnssdb (Net-Scale SDB daemon)

 DDNS client (not in use by the current prototype)

 Time synchronization (not in use by the current prototype). Time synchronization is im-

portant because time stamps are used for data synchronization between the storage nodes.

51

7.3. Transaction Queues for Data Integrity

Secure files are not modified directly in the data directory. Instead, modifications are first per-

formed in a separate transaction queue directory and later applied to the data directory all at

once. This is necessary for two reasons:

1. Data Integrity. A single client operation, such as creating a new file, typically trans-

lates into modifications of multiple secure files. This is particularly relevant when encryp-

tion keys are changed as those operations require all affected cryptographic links to be up-

dated as well. If one secure file were to be modified but not the other affected ones (e.g.,

because the connection to the client was lost), then we could leave the secure tree in an

unusable state. Its data could become inaccessible. In an encrypted file system that is the

same as loosing the data.

2. Data Synchronization. We need to be able to propagate modifications from one sto-

rage node to the others. Remember, that the server knows nothing about the relationships

of the secure files nor does it have access to any secret keys. Therefore, what it has to do

is keep track of the modifications applied to the secure files and faithfully repeat those in

the other nodes.

52

7.3.1. Transaction Queue Design

 nssdb_open_trans() starts a new transaction and creates a subdirectory in /sdb/que

which contains the process ID. We use the process ID such that later cleanup tools can later

determine if a transaction queue is still alive or is a leftover of a killed process.

 A transaction queue contains three subdirectories to distinguish between adding a new

file, modifying an existing file, and deleting a file:

- add/

- modify/

- delete/

 Once a transaction queue is created, all read and write operations first need to check if

the file they want to open is in the transaction queue. In other words, the process that

created the transaction will behave as if all modifications took effect immediately, while

all other processes see the directory tree unchanged until the transaction is executed.

 Before entering a file into the transaction queue it is locked in the data directory. Other

processes can still read the file but will not enter a file into their own transaction queue if

it is locked.

 When executing a transaction queue, all files from the /sdf/que/ directory are copied to

their proper place in /sdf/dat/ by using the rename() system call. This is the fastest way of

executing the queue (to our knowledge) and the kernel guarantees that no single file is

corrupted. However, if our own process dies during transaction queue execution, then the

secure file system may still become corrupted. There is no way to prevent this. The best

we can do is keep the queue execution as short as possible and as simple as possible (just a

straight linear loop in our case) to eliminate (or minimize) chances of the process crashing

or being killed by the system or due to power loss during transaction queue execution.

53

7.3.2. What Gets Entered into the Transaction Queue?

All files opened for writing or newly created files are entered into the transaction queue and

locked in the data tree (unless they are new files). In addition, certain files opened for reading

area also locked in the data tree. For example, if the application (libnssdf or jarnssdf) add a

new file they first load the parent directory, create the file, then update and write back the

parent directory. The secure file corresponding to that parent directory needs to be locked

between the read and write operations. Unfortunately, there is no way for libnssdb to know the

intention of the caller. When opening a file for reading, the application therefore needs to tell

libnssdb whether or not it needs the file locked.

7.3.3. Some Design Consequences

 Attempts to modify a section of the directory tree, which is already being modified, will

fail. This avoids blocking users for lengthy time periods. Remember that a modification op-

eration could be lengthy (e.g., several days when uploading a large file through a slow con-

nection).

 When a process reads a section of the directory tree while another process modifies that

section, it could be that the tree temporarily appears corrupted to the reading application.

That can happen if the first application reads one node before the queue was executed and

another node afterwards. The tree is not really corrupted, of course and preventing this

would mean to block read operations during modifications and those can be lengthy as

pointed out above.

54

7.3.4. Headaches Caused by POSIX Lock Specification

POSIX (Portable Operating System Interface) specifies that the kernel keep only one entry in

the locking table per process and open file, even if that process opens the file multiple times.

When closing a file, the lock gets removed, even if it was locked by a different file descriptor

of the same process.

This caused some headaches in the following situation: Assume we need to keep a file locked

across a read and a later write operation. The application will first read the file (open, read,

close). Much later, it will write changes back (open, write, close). The solution sounds simple,

open the file separately for the sole purpose of locking it. However, the close of the first read

operation will remove that lock.

As a workaround, we use the file descriptor from opening the file for locking and will not close

it until after execution of the transaction queue. This works fine. Just take care when working

on the affected code as it needs to keep proper state across otherwise unrelated code pieces.

Comments were added to all affected parts of the code, but of course, these dependencies are

far from obvious or intuitive.

As another consequence of this POSIX lock specification, libnssdb becomes non re-entrant. This

means we cannot have multiple sessions within the same process. For one, this is because one

session locks a file and another session reads the same file, it would remove the first session's

lock when closing the file. A second reason is that POSIX file locks don't work within the same

process. If one session tries to lock a file, which is already locked by another session, then the

lock should fail. However, if this is done within the same process, it does not fail and one ses-

sion can therefore not detect what locks the other session has applied.

55

7.3.5. Problem with Combining rename () and File Locking

Our initial implementation was locking the original file then modifying a copy of that file in the

que/ directory. When done, it moved the file from the que/ directory to the original place us-

ing the rename () system call. This replaced the original file with the modified copy as an

atomic operation. However, stress tests soon revealed file corruptions where one process could

undo the modifications of another process.

The cause of the problem turned out to be the following: Opening a file and applying a lock to

the opened file are two separate system calls and therefore not atomic. A process can open a

file while it is still locked but before attempting to lock the file itself, the other process can

call rename() which replaces the original file with a new one and then unlocks and closes the

original (now removed) file. When the first process tries to apply a lock to the original file

which is still open in that process, it will be successful and the process continues with the

planned modifications but uses the old outdated file.

As a consequence of this, locks cannot be used for our purposes when applied to the same file

we modify using rename () calls. We therefore modified our implementation to use separate

lock files that have the same name as the file they intend to protect but with an ".lck" exten-

sion. The lock files are automatically created when used the first time and are automatically

deleted when their corresponding data file is removed. Note, that we cannot remove lock files

after each usage. This would create a similar race condition as the above: Two processes could

both create their own lock files, one overwriting the others and both believing they have the

file locked.

56

7.4. Domain Name and Server List Management

One problem that needs to be addressed stems from the fact that some storage nodes may be

operated in environments without a static IP address, such as typical cable modem Internet

connections at homes and in small businesses.

The prototype system will therefore use a Dynamic DNS (DDNS) service provider. DDNS services

act like regular DNS as far as domain name lookup is concerned, except that they set the expi-

ration dates of IP addresses to a very short interval, typically just a few minutes. This forces

other DNS servers not to cache that information very long but instead query the root DNS

(DDNS) server at almost every request. This ensures that clients do not use outdated IP ad-

dresses to connect to storage nodes.

In addition to this, DDNS servers allow the storage nodes to announce their current IP address

on a regular basis, e.g., every few minutes, to the DDNS server. This is accomplished by instal-

ling a special piece of DDNS client code on each storage node.

Finally, this same setup can be used for the DDNS server to detect when a storage node is no

longer online and automatically take it out of the list of available IP addresses (fail over func-

tionality). An overview of this setup is shown in Figure 9

The same DDNS setup serves two additional purposes. First, it serves as a list of available sto-

rage nodes. While this prototype system will operate four storage nodes, that number is not

hard coded in the clients or anywhere else in the system. Instead, the DDNS client of each sto-

rage node announces itself to the DDNS server, which keeps track of the available storage

nodes at any given time. The DDNS server therefore makes a dynamic network database of

available storage nodes unnecessary.

57

The second additional purpose of the DDNS setup is to allow the Java applet running on the

users' browsers to connect to all available storage nodes in parallel. Normally, applets can only

connect to the same server from where they were originally loaded. However, browsers en-

force this by server name and domain, not by IP address. By using the same name and domain

for each storage node (just different IP addresses), the Java applet can connect to all of them

in parallel.

The steps involved by the user clients are as follows:

1. User enters the prototype system URL.

2. The browser does a DNS lookup.

3. The DDNS service provider returns in random order a list of available IP addresses, i.e.,

available storage nodes,

Figure 9. Network diagram of the dynamic DNS (DDNS) setup.

Storage Node 1

Dynam ic
DNS (DDNS)

Service Provider

DDNS Client

Storage Node 2
DDNS Client

Storage Node 3
DDNS Client

Storage Node 4
DDNS Client

User PC/Lapt op

Web browser
HTML/CSS
JavaScrip t

Java

58

4. The browser selects the first IP address and requests the root document from there.

Since all storage nodes run a web server with the same static content it does not matter to

which node the user connects. Any one will return the same HTML, CSS, JavaScript, and Ja-

va code necessary to run the access client.

5. After receiving the web page (with HTML, CSS, JavaScript, and Java code), both the

JavaScript code and the Java applet will start running automatically inside the browser

(the Java applet will run in the background and not generate any visible output on the

screen).

6. For each user interaction that requires communication with the storage nodes, the Ja-

va applet conducts a DNS lookup to receive the up to date list of IP addresses of the availa-

ble storage nodes. Subsequently, the applet connects to all available nodes in parallel.

59

8. Access Client Design

The browsers listed in Figure 10 are in order of precedence. We will attempt to support as

many browsers in the list as possible. Compromises may have to be made in the interest of

time.

As is also pointed out in Figure 10, there are three main components on the client side to be

developed: CSS, JavaScript and Java. Each of these components and their interfaces will be

described next.

8.1. CSS

This module contains the cascade style sheets associated with the graphical interface. This in-

cludes modules positions and appearances in terms of colors, fonts, default graphics and

layout.

8.2. JavaScript

This module takes care of HTML generation and of the entire user interface.

8.2.1. Graphical Interface to user

1. Generate panels with sliding bars

2. Progress bar

3. Accordion sections

4. Drag-and-drop

5. Long list handling

60

8.2.2. Interface to Java

1. function getStorageNodesStatus(/* No arguments */)

Description: Returns the number of Storage Nodes active and reachable.

Return value: Number of Storage Nodes that are reachable.

2. function getUsersList(/* No arguments */)

Description: Returns XML String with structure containing the list of all existing users with

whom data can be shared.

Return value: XML String with users' information.

3. function getFolderList(

 String fldLocation /* String indicating if the folder list is network, local or shared */

 String parentFld /* String indicating the path to parent folder from where the first level of

folders will be retrieved. “/” indicates root directory */

 Int startFld /* Index indicating the first folder in list when a range of folders is retrieved

*/

 Int length /* Number of folders in the list when a range of folders is retrieved */

)

Description: Returns XML string with structure containing folder list information at the spe-

cified level. It could be the network folder, the local folder or shared folder.

Return value: XML String with folder information.

4. function getFileList(

 String fldLocation /* String indicating if the files are in network, local or shared */

 String fldPath /* String indicating the folder path */

 Int startFld /* Index indicating the first file in list when a range of files is retrieved */

 Int length /* Number of files in list when a range of files is retrieved */

)

61

Description: Returns XML String with structure containing information about the list of files

at the specified folder. It could be a network, local or shared folder.

Return value: XML String with file list information.

5. function uploadFiles(

 Boolean updateFlag /* True (1) for update; False (0) for Overwrite */

 String srcFldPath /* String indicating the folder path in local file system */

 String destFldPath /* String indicating the folder path in the network */

 String fileList /* List of filenames with “;” separated */

)

Description: This function operates initially synchronously, blocking the JavaScript. It gene-

rates a queue of files to upload. An estimate of the time required for upload will be pro-

vided to the user. In the background the Java module will proceed with the upload opera-

tion. A callback procedure from the Java process will unblock the JavaScript process when

the operation is completed. Success Message will be displayed in the title of the logging

section. In case of failure, an alert pop-up window will be displayed indicating the error

and how many files were uploaded. User has the option to resume next time the network is

re-established. During the waiting period, a progress bar will be displayed with the user

having the option to cancel.

Return value: Estimated time for upload and then different messages depending on the

state.

6. function uploadFld(

 Boolean updateFlag /* True (1) for update; False (0) for Overwrite */

 String srcFldPath /* String indicating the folder path in local file system */

 String destFldPath /* String indicating the folder path in the network */

)

62

Description: Similar as before.

Return value: Estimated time for upload and queue list of files to be displayed by Java-

script, and then different messages depending on state.

7. function downloadFiles(

 Boolean updateFlag /* True (1) for update; False (0) for Overwrite */

 String srcFldPath /* String indicating the folder path in network file system, this could be

a shared folder */

 String destFldPath /* String indicating the folder path in the local file system */

 String fileList /* List of filenames with “;” separated */

)

Description: This is a synchronous process. The list of files is given to the Java process,

which acknowledges it and generates its own. When this is done, an estimate of the time to

download is given to the user. The JavaScript process is blocked in this version, showing a

progress bar with the option to cancel. In the background the download takes place. When

the process is completed successfully, a Success message is displayed in the title of the

logging area. If an error occurs, a pop-up window is displayed with the error message and

the user can resume the next time the connection is re-established.

Return value: Estimated time for download operation to complete and then different mes-

sages depending on state.

8. function downloadFld(

 Boolean updateFlag /* True (1) for update; False (0) for Overwrite */

 String srcFldPath /* String indicating the folder path in network file system, this could be

a shared folder */

 String destFldPath /* String indicating the folder path in the local file system */

)

63

Description: Similar as before.

Return value: Estimated time for download operation to complete and then different mes-

sages depending on state.

9. function deleteFiles(

 String FldPath /* String indicating the folder path */

 String fileList /* List of filenames with “;” separated */

)

Description: A list of files to be deleted in the network is passed to the Java process from

the JavaScript. Once this list has been created by the Java process, an estimate of the

time to delete is generated. A progress bar is displayed during this process execution with

option to cancel. After successful completion, a success message is displayed in the title of

the logging section. When an error occurs, a pop-up window is displayed and the process

will resume depending on the error.

Return value: Estimated time to delete.

10. function deleteFld(

 String fldPath /* String indicating the folder path */

)

Description: Similar as before.

Return value: Estimated time to delete.

11. function createFld(

 String srcFldPath /* String indicating the path of the source folder */

 String fldName /* String indicating the folder name of the new folder */

)

Description: This operation creates a new folder in the network underneath the source

64

folder with the folder name string.

Result value: Boolean of success or failure. If failure error message.

12. function renameFld(

 String fldPath /* String indicating the whole path of the folder to rename */

 String newfldName /* String indicating the folder name of the new folder */

)

Description: This operation renames an existing folder in the network.

Result value: Boolean of success or failure. If failure error message.

13. function changeStatusShareFld(

 Boolean addFlag /* true for adding read permission; false for removing read permission */

 String fldPath /* String indicating the whole path of the folder in the network which will

be shared */

 String usrSharing /* String indicating the user with whom this folder will be shared */

)

Description: This operation add or remove sharing permission to an existing folder in the

network with a system user.

Result value: Boolean of success or failure. If failure error message.

In subsequent release, the following functions to operate in the network will be added:

14. function copyFiles(

 String srcFldPath /* String indicating the source folder path */

 String destFldPath /* String indicating the destination folder path */

 String fileList /* List of filenames with “;” separated */

)

65

Description: A list of files will be copied from source folder to destination folder only in the

network. This is not an operation that can be done on the shared folders. This list is passed

to the Java process from the JavaScript. Once this list has been created by the Java

process estimates of the time to copy is generated and sends to the user. This is a blocking

operation. During that time a progress bar is displayed. After successful completion, a suc-

cess message is displayed in the title of the logging section. When an error occurs, a pop-

up window is displayed and the process will resume depending on the error.

Return value: Estimated time to copy.

15. function copyFld(

 String srcFldPath /* String indicating the source folder path */

 String destFldPath /* String indicating the destination folder path */

)

Description: Similar as before.

Return value: Estimated time to copy.

16. function moveFiles(

 String srcFldPath /* String indicating the source folder path */

 String destFldPath /* String indicating the destination folder path */

 String fileList /* List of filenames with “;” separated */

)

Description: Similar as before.

Return value: Estimated time to move.

17. function moveFld(

 String srcFldPath /* String indicating the source folder path */

 String destFldPath /* String indicating the destination folder path */

)

66

Description: Similar as before.

Return value: Estimated time to move.

8.3. Java

This module is the heart of the client. It communicates with JavaScript to take care of user

interactions and information display, as well as all the communication and data management

from and to the Storage Nodes.

In addition, this module performs all the cryptographic operations to secure and decipher user's

information.

67

9. Storage Node and Client Integration

9.1. Overview

Figure 10 shows an overview of storage node and access client integration and also the integra-

tion of a storage node with the other storage nodes.

1 TB d isk
dat a +

t ransact ion
queues

HTTP

“W
eb

D
AV

”

Web browser

(HTML) CSS

JavaScrip t

japnssdf

Local
d isk

Firefox
IE6,7
Safari Mac
Opera

System disk
+ st at ic web

cont ent

jarnssdf

Ot her
st orage
nodes

“ WebDAV”

“ WebDAV”

jarnsdav

libnssdb

Web server

srvnssdb
(nssdbd)

USB dongle

srvnssds

Transact ion
queue
daem on

libnssdb

sdfshell

libnssdf

Com m and
line t ool

libnssdb

USB dongle

Figure 10. Integration of a storage node and access client and integration of a storage node

with the other storage nodes. HTTP is used only for starting the web applications. It sends the

web content, JavaScript, and Java code to the browser. WebDAV is used for all storage data

interactions between the access client and the storage node(s) and for the interactions be-

tween the storage nodes.

68

9.2. Network File Server Functions

The network file server is almost like a regular file server because most of the functionality of

implementing the encrypted file system is performed on the client (as is necessary for main-

taining end-to-end security). What the file server is concerned, it stores regular files, they just

happen to have random file names. There a few particular tasks it needs to do beyond being a

standard file server:

 Generate a random file name.

 Check user certificate to enforce the rule that items (files and directories) can only be

modified by their owners, and to ensure only valid repository users can store data. This is

not necessary for data integrity but it is necessary for protection against data loss and

flooding of the storage node with junk data.

 Receive a transaction queue.

 Execute transaction queue locally. First, lock all affected files, then carry out all mod-

ifications on the queue and unlock the files.

 Return a requested file.

 Synchronize transaction queue with other storage nodes. Contact other nodes, and

submit the transaction queue. Do this until all other storage nodes confirmed successful

execution of the transaction queue on their side.

All items, except for the last, are carried out in reaction to a client request. The last one is

carried out by an independently scheduled process.

69

9.3. Storage Node Access Protocol (WebDAV)

For communication between storage nodes and web clients (Java code) we use a proprietary

protocol that is closely related to WebDAV/HTTP. This does not mean that our system works

with other WebDAV clients. That would be impossible because WebDAV has no notion of our

encrypted file system. However, whenever possible, we use the exact specifications provided

by WebDAV and for concepts which are not known to WebDAV (e.g., transaction queues), we

use proprietary WebDAV extensions. In summary, our proprietary protocol is a small subset of

WebDAV with some proprietary extensions.

9.4. Design Decision: Apache mod_dav or Net-Scale Daemon

During early design discussions the mod_dav module would be used with Apache. This provides

a simple interface for many of the functions required by the client. After some initial work

apache2 was eliminated for the following reasons.

1. Security. The Apache module interface is complex, although it appears to be well un-

derstood by the Apache developer community. A module is inserted in a series of default

handlers, which cannot be removed or bypassed. This is a potential security weakness, as

rogue code could possibly be inserted via this chain - it becomes necessary to fully evaluate

and understand Apache.

2. Request vs. Transaction. A connection is established with the web server for each re-

quest then the connection is closed. SDF requires transactions, which do have state; ideally

the connection is not closed until the transaction is complete. Although there may be wor-

karounds for this, they would require modification of the core apache code (never a good

idea).

70

3. Child Process vs. Threads. The Net-Scale daemon spawns a child process for each con-

nection request. The process terminates when the connection is closed. Any bugs within

the code are isolated and do not propagate or affect the runtime environment. In Apache,

connection requests are normally handled by threads; in the event of abnormal termination

these threads may or may be cleaned up. The impact on the runtime environment, espe-

cially over time, is unknown.

4. Subset of WebDAV Functionality. Much of the WebDAV functionality is not required

(and will not be used) by SDF. It is easier to add this functionality to the daemon than to

worry about what is not being used.

71

9.5. Protocol Definition

9.5.1. Overview

 GET Method

 PUT Method

 COPY Method

 DELETE Method

 IHLOAD Method

 IHSAVE Method

 OPENTRANS Method

 CLOSETRANS Method

9.5.2. GET Method

The GET method is for reading a secure file. If <lock-value> is "yes" (see below), then it can

only be called after an OPENTRANS request.

GET Request Syntax and Header Fields

• GET /<file-name>

• Lock: <lock-value>

The file name has to start with a '/' but it cannot contain any other '/' characters. That's be-

cause an SDB storage node has no concept of paths. It only knows file names (directory spread-

ing and pre-pending the root paths is done by the node automatically and are transparent at

this protocol level). Any text following "GET /<file-name>", e.g., "HTTP/1.1" is ignored.

If the <lock-value> header field is "yes", then the file is locked.

Any additional header fields and any content are ignored.

72

GET Response Header Fields

Upon success, GET returns the following HTTP header fields:

• Content-type: application/octet-stream

• Content-length: <length>

• Content-location: /<file-name>

• Last-modified: 0

<length> indicates the content length in bytes. <file-name> is the name of the file returned. It

is the same as specified in the request. The Last-modified field is currently not supported and

its value is always 0.

GET Response Status Codes

• 200: OK.

• 400: Bad request, e.g., file name (path) missing or not staring with a '/'.

• 404: File not found.

• 423: File is locked by another request.

• 451: Wrong request hierarchy state.

• 500: Internal server error.

• Socket closed by host: IP connection lost or i/o error while reading file.

9.5.3. PUT Method

The PUT method is for creating a new or modifying an existing secure file. It can only be called

after an OPENTRANS request.

PUT Request Syntax and Header Fields

• PUT /<file-name>

• Content-length: <length>

73

If a file name is specified, it has to start with a '/'. If no file name is specified, a single '/' cha-

racter must be sent instead. In that case, a new random file name will be created and re-

turned. Any text following "PUT /<file-name>", e.g., "HTTP/1.1" is ignored.

The <length> header field must specify the data content in number of bytes. Any additional

header fields are ignored.

PUT Response Header Fields

• Content-location: /<file-name>

• Last-modified: 0

<file-name> is the name of the file written. If the client specified a file name in the request,

this is the same. If not, it is the new random file name that was created. The Last-modified

field is currently not supported and its value is always 0.

PUT Response Status Codes

• 200: OK.

• 400: Bad request, e.g., file name (path) not staring with a '/'.

• 423: File is locked by another request.

• 451: Wrong request hierarchy state.

• 500: Internal server error.

• Socket closed by host: IP connection lost or i/o error while writing file.

74

9.5.4. COPY Method

The COPY method is for making a copy of a secure file in the network without sending the file

content to the client and back. It can only be called after an OPENTRANS request.

COPY Request Syntax and Header Fields

• COPY /<src-file-name> /<dest-file-name>

If either file name is specified, it has to start with a '/'. If no <dest-file-name> is specified, a

single '/' character must be sent instead. In that case, a new random file name will be created

and returned. Any text following the destination file name is ignored. Also, any additional

header fields and any content are ignored.

COPY Response Header Fields

• Content-location: /<dest-file-name>

• Last-modified: 0

<dest-file-name> is the name of the destination file written. If the client specified a file name

in the request, this is the same. If not, it is the new random file name that was created. The

Last-modified field is currently not supported and its value is always 0.

COPY Response Status Codes

• 200: OK.

• 400: Bad request, e.g., file name (path) not staring with a '/'.

• 404: Source file not found.

• 423: Destination file is locked by another request.

• 451: Wrong request hierarchy state.

• 500: Internal server error.

75

9.5.5. DELETE Method

The DELETE method is for removing a secure file. It can only be called after an OPENTRANS

request.

DELETE Request Syntax and Header Fields

• DELETE /<file-name>

<file-name> must specify the secure file name. It must be prefixed with a '/'.

Any additional header fields and any content are ignored.

DELETE Response Header Fields

DELETE returns no additional header fields.

DELETE Response Status Codes

• 200: OK.

• 400: Bad request, e.g., file name (path) not staring with a '/'.

• 404: File not found.

• 423: File is locked by another request.

• 451: Wrong request hierarchy state.

• 500: Internal server error.

76

9.5.6. IHLOAD Method

The IHLOAD method is for reading the item header of a secure file. If <lock-value> is "yes" (see

below), then it can only be called after an OPENTRANS request.

IHLOAD Request Syntax and Header Fields

• IHLOAD /<file-name>

• Lock: <lock-value>

The file name has to start with a '/' but it cannot contain any other '/'. Any text following "GET

/<file-name>", e.g., "HTTP/1.1" is ignored.

If the <lock-value> header field is "yes", then the file is locked.

Any additional header fields and any content are ignored.

IHLOAD Response Header Fields

Upon success, IHLOAD returns the following HTTP header fields:

• Content-type: application/octet-stream

• Content-length: <length>

• Content-location: /<file-name>

• Last-modified: 0

• File-size: <file-size>

77

<length> indicates the content length (item header size) in bytes. <file-name> is the name of

the file returned. It is the same as specified in the request. The Last-modified field is currently

not supported and its value is always 0. <file-size> is the total size of the secure file in bytes.

IHLOAD Response Status Codes

• 200: OK.

• 400: Bad request, e.g., file name (path) missing or not staring with a '/'.

• 404: File not found.

• 423: File is locked by another request.

• 451: Wrong request hierarchy state.

• 500: Internal server error.

• 551: Wrong secure file format.

• Socket closed by host: IP connection lost or i/o error while writing data.

9.5.7. IHSAVE Method

The IHSAVE method is for modifying the item header of a secure file. It can only be called after

an OPENTRANS request.

IHSAVE Request Syntax and Header Fields

• IHSAVE /<file-name>

• Content-length: <length>

Name of the secure file preceded by a '/'. Any text following "PUT /<file-name>", e.g.,

"HTTP/1.1" is ignored.

The <length> header field must specify the item header size in bytes. Any additional header

fields are ignored.

78

IHSAVE Response Header Fields

• Content-location: /<file-name>

• Last-modified: 0

<file-name> is the name of the file written. It is the same name the client specified in the re-

quest. The Last-modified field is currently not supported and its value is always 0.

IHSAVE Response Status Codes

• 200: OK.

• 400: Bad request, e.g., file name (path) not staring with a '/'.

• 404: Source file not found.

• 423: File is locked by another request.

• 451: Wrong request hierarchy state.

• 500: Internal server error.

• 551: Wrong secure file format.

• Socket closed by host: IP connection lost or i/o error while writing file.

9.5.8. OPENTRANS Method

The OPENTRANS method is for starting a new transaction.

OPENTRANS Request Syntax and Header Fields

• OPENTRANS

Any text following "OPENTRANS ", e.g., "HTTP/1.1" is ignored. Any additional header fields and

any content are ignored.

OPENTRANS Response Header Fields

OPENTRANS does not return any additional header fields.

79

OPENTRANS Response Status Codes

• 200: OK.

• 400: Bad request.

• 451: Wrong request hierarchy state.

• 500: Internal server error.

9.5.9. CLOSETRANS Method

The CLOSETRANS method is for completing a new transaction.

CLOSETRANS Request Syntax and Header Fields

• CLOSETRANS

• Transaction-queue: <execute-flag>

If a "Transaction-queue" header field is specified and its value is "execute", then the transac-

tion queue is executed. Otherwise the queue is discarded. Any text following "CLOSETRANS ",

e.g., "HTTP/1.1" is ignored. Any additional header fields and any content are ignored.

CLOSETRANS Response Header Fields

CLOSETRANS does not return any additional header fields.

CLOSETRANS Response Status Codes

• 200: OK.

• 400: Bad request.

• 451: Wrong request hierarchy state.

• 500: Internal server error.

80

9.6. Design Compromises and Deferred Features

We decided to make the following design compromises and defer the following features in or-

der to minimize time to completion of the first SDF prototype.

9.6.1. Changing the Locks (Access Revocation)

The function chlocks () changes the random item keys of the specified directory and all its sub-

directories. A typical use of this function is to call it right after one or more read access privi-

leges have been removed. This ensures that users whose read access was revoked can no longer

read the directory tree, even if they secretly made copies of the random encryption keys.

While chlocks () changes the keys of all directories it leaves the keys of files unchanged. The

necessary re-encryption could be very lengthy as the entire file needs to be sent to the client

and back. Instead, files are automatically re-encrypted each time the client modifies them. At

that point there is no extra cost for re-encryption. Furthermore, immediate re-encryption

would not really buy more security, as a user whose read access was revoked could easily have

made a copy of the file beforehand. For regular users that's much easier to do than secretly

keeping copies of the random keys (the latter requires code hacking).

Furthermore, the entire specified directory sub tree is updated in a single transaction. This is

for code simplicity only. As a consequence, there is a limit on the directory sub tree size de-

pending on the available client and server memory. The server's bottleneck is most likely the

number of file descriptors that need to be kept open because of the locks applied to them. This

limit should be in the hundreds of thousands of nodes, which is certainly sufficient for a proof

of concept prototype and a limited pilot. Eventually, we will reach this limit and need to modi-

fy this function to break down the updating of larger directory sub trees into multiple transac-

tions.

See the outdated Access Revocation page for more information.

81

9.6.2. File Date and Time Stamps

To make date and time stamps useful we need to use the client to create the time and store it

in the SDF headers. We cannot use the time stamps of the storage node file systems for a num-

ber of reasons:

 They cannot be used for synchronization (update mode) because they would not let us

decide whether or not a file provided by the client is newer or older than an existing one

(time zone and clock settings may be different).

 The secure storage node files can be updated for housekeeping purposes (e.g., updating

a cryptographic link) without changing the actual content. The storage node modify time is

therefore different from what the user would consider the modify time.

As this is a low risk item we defer it to after our first prototype completion.

9.6.3. Directories in Memory

During encryption and decryption the client will keep at least two copies of an entire directory

in memory (one encrypted the other in clear). This limits the maximum practical directory size

(but not its content size) to a few hundred MB (or a few hundred thousand entries) depending

on the available memory on the client computer.

Note, that the API of libnssdf and jarnssdf supports block wise processing and random block

access for directories. Therefore, the client code itself does not have this limitation but the

internals of libnssdf and jarnssdf do.

Because the encryption algorithms we use (stream ciphers) do not allow for random block

access (if they did, it would be likely a security hole) the solution will be to store directories in

multiple chunks on the storage node, e.g., of 1 MB each. Each chunk will have its own secret

random key and cryptographic links.

82

9.6.4. Root Directories cannot be shared

Users cannot share their root directories with other users. They can share any file or directory

underneath but not the root itself. The reasons for this are a) to reduce the development and

testing effort a bit and b) we feel it probably does not make sense to share an entire root di-

rectory. However, this functionality can be added very easily if need be.

9.6.5. Cryptographic Link ID Rollovers

Cryptographic link IDs start at 1 and are incremented each time a new link is created. Once the

variable, which holds the ID rolls over, uniqueness is no longer guaranteed. In case of Java, an

out of bound error will be created in case of C the rollover will take place silently. This will

happen after approximately 2 billion cryptographic links. In practice, this could only happen for

items whose cryptographic links are constantly added and removed again. For the current demo

and pilot prototype we therefore do not yet address this case.

83

10. Decision Guidelines

This section outlines the guiding principles we used for making decisions throughout the

project. The number one guiding principle is the main project goal (Section 1.1.):

“Demonstrate that a robust distributed storage network with end-to-end security and a good

user experience is feasible by designing, implementing, and deploying a prototype system with

multiple storage nodes and a zero footprint web access client. ”

Other guiding principles are organized in critical items, important items, and less important

items.

10.1. Critical Items

These items are critical to the project and cannot be compromised.

 Deadline. The prototype system must be ready for usage by end users on September 1,

2008.

 End-to-end security. The only way to read unauthorized documents is by compromising

the private key of a user with read access to that document. The only way to create or al-

ter a document undetected is by compromising the private key of a user who has write

access to that document or directory.

 No single point of failure. The only exception is the server software (see Section Error!

Reference source not found.).

 Zero footprint web access. No client side software installation needed and no browser

requirements other than HTML, CSS, JavaScript, and Java. For example, no Flash or other

plug-in requirements.

 Usability. Any feature or functionality must be usable by an average user without special

security education.

84

 Secure sharing. Users must be able to give other users secure read access to their doc-

uments without sharing any secret encryption keys.

 Scalability. The principles used in this prototype system must be scalable to consumer

scale (millions of users). The software we implement should have the same scalability

properties but if need be we can defer a fully scalable implementation until later.

 Data integrity. If a document is accepted by a storage node, then the user must be

guaranteed that it was uploaded correctly and without any network errors. Likewise, if a

document is downloaded without an error message, then users must be guaranteed that it

was transferred and signed correctly.

10.2. Important Items

These items are important and should not be compromised if it can be avoided.

 Intuitive user experience. Wherever possible, the system should be intuitive for aver-

age end users without requiring them to study manuals or get training.

 Convenience for storage node operators. This includes equipment size, noise generat-

ed, power consumption, number of cables needed, and time to setup.

 UI scalability. The user interface should scale to millions of documents and should, in

particular, not have the same limitations with long lists as the current Ajax access client on

net-arc.net has.

 Low maintenance. The system should be essentially maintenance free. If a storage node

has a problem, it should be easy to detect and replace the hardware. Also, system monitor-

ing should be automatic and easy to observe for humans.

85

10.3. Less Important Items

These items are less important and can be compromised in support of critical and important

items.

 Server software portability. The Net-Scale server software should be as portable as

possible. However, in the interest of time we will avoid testing on multiple platforms.

 Access control user interface. While users must be able to control that has access to

their documents, the user interface does not necessarily need to be able to deal with a

large user base. For example, a simple linear list of all users would be acceptable for now,

versus a more sophisticated user lookup implementation combined with customizable quick

lists.

86

References

 [1] John Kubiatowicz et al. OceanStore: An Architecture for Global-Scale Persistent Storage.

2000. http://oceanstore.cs.berkeley.edu/publications/papers/pdf/asplos00.pdf

[2] Hakim Weatherspoon, Patrick Eaton, Byung-Gon Chun, and John Kubiatowicz. Antiquity:

Exploiting a Secure Log for Wide-Area Distributed Storage. 2007.

http://oceanstore.cs.berkeley.edu/publications/papers/pdf/antiquity06.pdf

[3] Dominik Grolimund, Luzius Meisser, Stefan Schmid, and Roger Wattenhofer. Cryptree: A

Folder Tree Structure for Cryptographic File Systems. 2006.

http://dcg.ethz.ch/publications/srds06.pdf

[4] Eu-Jin Goh, Secure Indexes, Stanford University, CA. 2004.

http://eujingoh.com/papers/secureindex/index.html.

[5] Mikkhail J. Atallah, Keith B. Frikken, and Marina Blanton. Dynamic and Efficient Key

management for Access Hierarchies. 2005. Department of Computer Science, Purdue

University. http://www.cse.nd.edu/~mblanton/papers/ccs05.pdf

http://oceanstore.cs.berkeley.edu/publications/papers/pdf/asplos00.pdf
http://oceanstore.cs.berkeley.edu/publications/papers/pdf/antiquity06.pdf
http://dcg.ethz.ch/publications/srds06.pdf
http://eujingoh.com/papers/secureindex/index.html
http://www.cse.nd.edu/~mblanton/papers/ccs05.pdf

87

List of Acronyms

AES Advanced Encryption Standard

Ajax Asynchronous JavaScript and XML

CAC Common Access Card

CFB Cipher Feed-Back

CL Cryptographic Link

CPU Central Processing Unit

CSS Cascading Style Sheets

DARPA Defense Advanced Research Projects Agency

DES Digital Encryption Standard

DNS Domain Name Service

DDNS Dynamic Domain Name Service

FIPS Federal Information Processing Standard

HTML Hypertext Markup Language

HTTP Hypertext Transport Protocol

HTTPS Hypertext Transport Protocol over transport layer security

IP Internet Protocol

IV Initialization Vector

JCE Java Cryptography Extension

MD5 Message-Digest Algorithm 5

NIST National Institute for Standards and Technology

88

OpenSSL A popular open source library for writing SSL applications

OS Operating System

PC Personal Computer

PKCS Pulbic-Key Cryptography Standards

POSIX Portable Operating System Interface

SDF Secure Distributed File System

SHA Secure Hash Algorithm

RSA The Security Division of EMC, also the name of their public key

encryption algorithm

SSL Secure Socket Layer

URL Uniform Resource Locator

USB Universal Serial Bus

WebDAV Web Distributed Authoring and Versioning

